3.478 \(\int \frac{\tan ^5(e+f x)}{(a-a \sin ^2(e+f x))^{3/2}} \, dx\)

Optimal. Leaf size=68 \[ \frac{a^2}{7 f \left (a \cos ^2(e+f x)\right )^{7/2}}-\frac{2 a}{5 f \left (a \cos ^2(e+f x)\right )^{5/2}}+\frac{1}{3 f \left (a \cos ^2(e+f x)\right )^{3/2}} \]

[Out]

a^2/(7*f*(a*Cos[e + f*x]^2)^(7/2)) - (2*a)/(5*f*(a*Cos[e + f*x]^2)^(5/2)) + 1/(3*f*(a*Cos[e + f*x]^2)^(3/2))

________________________________________________________________________________________

Rubi [A]  time = 0.12691, antiderivative size = 68, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 4, integrand size = 26, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.154, Rules used = {3176, 3205, 16, 43} \[ \frac{a^2}{7 f \left (a \cos ^2(e+f x)\right )^{7/2}}-\frac{2 a}{5 f \left (a \cos ^2(e+f x)\right )^{5/2}}+\frac{1}{3 f \left (a \cos ^2(e+f x)\right )^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[Tan[e + f*x]^5/(a - a*Sin[e + f*x]^2)^(3/2),x]

[Out]

a^2/(7*f*(a*Cos[e + f*x]^2)^(7/2)) - (2*a)/(5*f*(a*Cos[e + f*x]^2)^(5/2)) + 1/(3*f*(a*Cos[e + f*x]^2)^(3/2))

Rule 3176

Int[(u_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(p_), x_Symbol] :> Int[ActivateTrig[u*(a*cos[e + f*x]^2)^p]
, x] /; FreeQ[{a, b, e, f, p}, x] && EqQ[a + b, 0]

Rule 3205

Int[((b_.)*sin[(e_.) + (f_.)*(x_)]^(n_))^(p_.)*tan[(e_.) + (f_.)*(x_)]^(m_.), x_Symbol] :> With[{ff = FreeFact
ors[Sin[e + f*x]^2, x]}, Dist[ff^((m + 1)/2)/(2*f), Subst[Int[(x^((m - 1)/2)*(b*ff^(n/2)*x^(n/2))^p)/(1 - ff*x
)^((m + 1)/2), x], x, Sin[e + f*x]^2/ff], x]] /; FreeQ[{b, e, f, p}, x] && IntegerQ[(m - 1)/2] && IntegerQ[n/2
]

Rule 16

Int[(u_.)*(v_)^(m_.)*((b_)*(v_))^(n_), x_Symbol] :> Dist[1/b^m, Int[u*(b*v)^(m + n), x], x] /; FreeQ[{b, n}, x
] && IntegerQ[m]

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rubi steps

\begin{align*} \int \frac{\tan ^5(e+f x)}{\left (a-a \sin ^2(e+f x)\right )^{3/2}} \, dx &=\int \frac{\tan ^5(e+f x)}{\left (a \cos ^2(e+f x)\right )^{3/2}} \, dx\\ &=-\frac{\operatorname{Subst}\left (\int \frac{(1-x)^2}{x^3 (a x)^{3/2}} \, dx,x,\cos ^2(e+f x)\right )}{2 f}\\ &=-\frac{a^3 \operatorname{Subst}\left (\int \frac{(1-x)^2}{(a x)^{9/2}} \, dx,x,\cos ^2(e+f x)\right )}{2 f}\\ &=-\frac{a^3 \operatorname{Subst}\left (\int \left (\frac{1}{(a x)^{9/2}}-\frac{2}{a (a x)^{7/2}}+\frac{1}{a^2 (a x)^{5/2}}\right ) \, dx,x,\cos ^2(e+f x)\right )}{2 f}\\ &=\frac{a^2}{7 f \left (a \cos ^2(e+f x)\right )^{7/2}}-\frac{2 a}{5 f \left (a \cos ^2(e+f x)\right )^{5/2}}+\frac{1}{3 f \left (a \cos ^2(e+f x)\right )^{3/2}}\\ \end{align*}

Mathematica [A]  time = 0.107422, size = 51, normalized size = 0.75 \[ \frac{\left (35 \cos ^4(e+f x)-42 \cos ^2(e+f x)+15\right ) \sec ^4(e+f x)}{105 f \left (a \cos ^2(e+f x)\right )^{3/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[Tan[e + f*x]^5/(a - a*Sin[e + f*x]^2)^(3/2),x]

[Out]

((15 - 42*Cos[e + f*x]^2 + 35*Cos[e + f*x]^4)*Sec[e + f*x]^4)/(105*f*(a*Cos[e + f*x]^2)^(3/2))

________________________________________________________________________________________

Maple [A]  time = 1.991, size = 51, normalized size = 0.8 \begin{align*}{\frac{35\, \left ( \cos \left ( fx+e \right ) \right ) ^{4}-42\, \left ( \cos \left ( fx+e \right ) \right ) ^{2}+15}{105\,{a}^{2} \left ( \cos \left ( fx+e \right ) \right ) ^{8}f}\sqrt{a \left ( \cos \left ( fx+e \right ) \right ) ^{2}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(f*x+e)^5/(a-a*sin(f*x+e)^2)^(3/2),x)

[Out]

1/105/a^2/cos(f*x+e)^8*(a*cos(f*x+e)^2)^(1/2)*(35*cos(f*x+e)^4-42*cos(f*x+e)^2+15)/f

________________________________________________________________________________________

Maxima [A]  time = 1.0354, size = 93, normalized size = 1.37 \begin{align*} \frac{35 \,{\left (a \sin \left (f x + e\right )^{2} - a\right )}^{2} a^{3} + 42 \,{\left (a \sin \left (f x + e\right )^{2} - a\right )} a^{4} + 15 \, a^{5}}{105 \,{\left (-a \sin \left (f x + e\right )^{2} + a\right )}^{\frac{7}{2}} a^{3} f} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(f*x+e)^5/(a-a*sin(f*x+e)^2)^(3/2),x, algorithm="maxima")

[Out]

1/105*(35*(a*sin(f*x + e)^2 - a)^2*a^3 + 42*(a*sin(f*x + e)^2 - a)*a^4 + 15*a^5)/((-a*sin(f*x + e)^2 + a)^(7/2
)*a^3*f)

________________________________________________________________________________________

Fricas [A]  time = 1.67547, size = 132, normalized size = 1.94 \begin{align*} \frac{{\left (35 \, \cos \left (f x + e\right )^{4} - 42 \, \cos \left (f x + e\right )^{2} + 15\right )} \sqrt{a \cos \left (f x + e\right )^{2}}}{105 \, a^{2} f \cos \left (f x + e\right )^{8}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(f*x+e)^5/(a-a*sin(f*x+e)^2)^(3/2),x, algorithm="fricas")

[Out]

1/105*(35*cos(f*x + e)^4 - 42*cos(f*x + e)^2 + 15)*sqrt(a*cos(f*x + e)^2)/(a^2*f*cos(f*x + e)^8)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(f*x+e)**5/(a-a*sin(f*x+e)**2)**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\tan \left (f x + e\right )^{5}}{{\left (-a \sin \left (f x + e\right )^{2} + a\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(f*x+e)^5/(a-a*sin(f*x+e)^2)^(3/2),x, algorithm="giac")

[Out]

integrate(tan(f*x + e)^5/(-a*sin(f*x + e)^2 + a)^(3/2), x)